
Engr433 Class Project Autumn, 2019

Title

8-bit RISC embedded processor design

Objectives

• Learn about basic microprocessor architecture;
• Learn about multi-input system controllers;
• Learn to design and debug a complex digital system;
• Learn to address FPGA design flow and implementation issues.

References

• This handout;
• Xilinx documents on the class web page.

Preamble

There’s never been a better time to design a new microprocessor. With Intel on the skids and all of it’s
competitors wondering what to do next, the time is ripe for Walla Walla University to increase it’s share in
the merchant semicondutor market. The following description provides the basis for a new and improved
RISC processor.

General Architecture

A microprocessor can be treated as a sophisticated programmable controller. The architecture of a
microprocessor includes a finite state machine (FSM) controller and a data path unit (DPU) as shown in
Figure 1. Note that all input and output conditioning logic has been omitted. The FSM controller can be

Figure 1 – Microprocessor Architecture.

Page 2

modeled as a standard Mealy machine with the external inputs and feedback signals acting as the system
inputs. The outputs of the Mealy machine are the control signals to the DPU. All data in the processor is
handled by the data path unit.

Figure 2 below shows an expanded view of the FSM controller. All instructions are stored in the instruction
memory. The outputs of the program counter act as an address input to the instruction memory. Each
instruction is interpreted by the controller which then generates appropriate signals to control the DPU. The
execution of the instruction is carried out entirely in the DPU.

Figure 3 shows an expanded diagram of the data path unit. Note that this is a general model. The ALU
accepts two 8-bit inputs along with the Ci and generates an 8-bit output and a Co. The ALU is purely
combinational. The output of the ALU is stored back in the register memory. It is necessary to get data into
the DPU via switches, memory, etc. and also necessary to get data from the DPU to external sources like
memory, displays, etc.

Figure 2 - FSM Controller.

Figure 3 – Data Path Unit.

Page 3

Figure 4 shows a possible programming model for the RISC
processor. Note that this model includes four 8-bit registers for data
storage (R0-R3), 256 bytes of 8-bit instruction memory, an 8-bit
ALU with a carry bit, 8 switches for data input, and 8 LED's for
data output.

Instruction Set
Your design must implement, at a minimum, the instructions
shown below. You could loosely group these instructions into 3
classes: register instructions, branch instructions, and halt-I/O
instructions. Note that the Carry flag is affected only if an
arithmetic instruction is executed and Co equals 1. This happens
whenever an addition overflows or when a subtraction does not
produce a borrow.

Mnemonic Operation Description
ADDC RDn ¬ RSn + RDn + Ci Add the source register to the destination register to the Carry

in flag and store the result back into the destination register.
Carry flag is set if the result of the addition overflows.

AND RDn ¬ RSn • RDn Logically AND the source and destination registers and place
the result back into the destination register.

CLRC 0 ® C Clear the Carry flag.
HALT None HALT stops the processor from further execution until a reset

or continue signal is received.
JC IF C then PC ¬ Addr8 else

PC ¬ PC + 2
If the carry flag is set then the next byte following the JC
instruction is loaded into the PC, otherwise the PC is
incremented by 2.

JNC See above. See above.
JMP PC ¬ Addr8 The byte following the JMP instruction is loaded into the PC.
JZ If Rn = 0 Then PC ¬

Addr8 Else PC ¬ PC + 2
If register N is zero, then the byte following the JZ
instruction, Addr8, is loaded into the PC, otherwise the PC is
incremented by 2.

MOVI Data8 ® Rn Loads the Register Rn with the 8-bit data, Data8.
MOVR RSn ® RDn Moves 8-bit data between registers.
NOP No operation No operation is performed.
OR RDn ¬ RSn ½ RDn The source register, RSn and the destination register, RDn are

logically OR’ed together and the result is stored in RDn.
PI Rn ¬ Pin The contents of the input port are loaded into the register Rn.
PO Rn ® Pout The contents of Rn is transferred to the output port
SETC C ¬ 1 Set the carry flag to 1.
SUBB RDn ¬ RSn - RDn - ~Ci The source register and the complement of the carry flag are

subtracted from the destination register and the result is stored
in the destination register. Co is equal to the borrow out from
subtraction.

Figure 4 – Programming Model.

Page 4

Table 1 on the right gives some examples of
register instructions.

Sample Program

The program in Table 2 multiplies two 8-bit
unsigned numbers to produce a 16-bit product.
Note that the multiplicand is set in the switch
register before the program is started. When
the program halts the first time, the multiplier
is set in the switches and then the machine is
restarted. When it halts again, the lights
display the most significant eight bits of the
product, and when restarted it
will halt and display the least
significant eight bits. You
should check over the program
to verify your understanding of
the instruction set.

Assignment

Implement the RISC processor
as described above. Test your
system with the multiplication
program shown in Table 2.
Next, write and test a program
that inputs a pattern from the
switch register and rotates it in
the lights. The pattern should
spend an equal amount of time
in each position.

Implementation

You must implement your
design using VHDL on the
Xilinx FPGA boards. The
following inputs and outputs are recommended for ease of operation and debugging:

Reset - A button to initialize control and clear PC.
Start - A button that starts program execution at the current location pointed to by PC.
Incpc - A button to increment the PC when the machine is halted.
Ss - A button that will single step through each micro-instruction.
Sw - Eight toggle switches used to input data to a program.
Dataout - One seven-segment display that shows the contents of RD at all times.
Pcout - One seven-segment display that shows the contents of PC at all times.

Grading Criteria

Your final project is worth 25% of your grade this quarter. Here are the guidelines for how the final project
points will be allocated:

• Hardware checkout – 60%

Mnemonic Operation
Clear R2 R2 - R2 ® R2
Increment R3 R3 + 1 ® R3
Shift Left R1 R1 + R1 ® R1
ADD R1, R0 R1 + R0 ® R0
Subtract R2, R0 R0 - R2 ® R0
Move R3, R2 R3 ® R2

Table 1 - Example Register Instructions.

Address Operation Comments
0 SW ® R1, Halt X ® R1
1 R0 - R0 ® R0 Clear R0
2 R0 - R1 - 1 ® R0 - (X + 1) ® R0
3 SW ® R1 Y ® R1
4 R2 - R2 ® R2 Clear product
5 R3 - R3 ® R3
6 R0 + 1 ® R0 Increment R0 and
7 BR to ADDR B if C = 1 test for zero
8 R1 + R2 ® R2 Add Y to product
9 R3 + C ® R3
A Branch to ADDR 6 Loop back
B R3 ® LED's, Halt Display product
C R2 ® LED's, Halt
D Branch to ADDR 0 Start over

Table 2 - Sample program to multiply two 8-bit numbers.

Page 5

You must bring your project to the class room at the final test time or before and demonstrate it to
the instructor.

• Project Assignment #1 – 5%
• Final report – 15%

Each group must turn in a report. A sample report will be available in Dr Nelson’s office.
Your report must contain the following elements at a minimum:
o Cover sheet (including title of your processor)
o Table of Contents
o Introduction
o Design philosophy
o Detailed architecture description
o Results
o Lessons learned
o Conclusions
o Appendices

§ Schematics
§ VHDL code
§ Design path
§ Instruction set details
§ Example programs

o Schematics, pictures, and videos as appropriate.
• Team evaluation and attendance – 10%
• Instructor evaluation – 10%

Hints

• Think Block Diagram!
• Read this handout several times until a solid grasp of the overall project is firmly in hand.
• Began discussions with your lab partner on project management and partitioning of responsibilities.
• Do top down design, i.e. start with a general block diagram and add details as you progress.
• Define micro-operations for each of the instructions and create a state machine accordingly.
• Iterate on the above two steps until you are certain your design is debugged. Iterate again.
• Code, test, and debug.
• Think Block Diagram!

